Simulation Modeling of Unidirectional Dynamic Remagnetization of Electrical Steel

Authors

  • Irina B. Podbereznaya Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова
  • Aleksandr N. Tkachev Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

DOI:

https://doi.org/10.17213/0136-3360-2021-4-5-5-13

Keywords:

simulation modeling, hysteresis, dynamic model, basic magnetization curve, shape coefficient

Abstract

The problem of modeling unidirectional dynamic remagnetization of electrical steel in periodic modes, including sinusoidal and non-sinusoidal changes in the average cross-section of the induction sheet, is considered and solved. The relevance of the problem under consideration is determined by the fact that when designing semiconductor pulse converters of power supply systems operating in peak load modes, it becomes necessary to calculate their characteristics and parameters with a more accurate setting of the magnetic characteristics of steel, taking into account the real processes of dynamic magnetization reversal observed in the magnetic circuits of transformers and chokes. The proposed simulation model of dynamic magnetization reversal of a ferromagnet allows us to describe with acceptable accuracy the nonlinear, hysteresis and dynamic properties and characteristics of steel, including hysteresis loops, the main magnetization curves, and losses. The performed modernization of the classical Giles - Atherton(JA) model makes it possible to take into account and approximately describe the eddy currents and magnetic viscosity that appear during dynamic remagnetization. The developed numerical procedure allows you to identify the parameters of the constructed model and configure it. The results of the performed validation of the model using experimental data confirm the possibility of its application to describe the characteristics of electrical steel in dynamic modes of remagnetization.

Author Biographies

Irina B. Podbereznaya, Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Candidate of Technical Sciences, Associate Professor.

Aleksandr N. Tkachev, Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Doctor of Technical Sciences, Professor.

References

Bertotti G. Hysteresis in Magnetism. San Diego, CA, USA: Academic, 1998.

Jiles D.C., Atherton D.L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater., vol. 61, nos. 1 - 2, pp. 48 - 60, 1986.

Toms H.L., Colclaser R.G., Krefta M.P. Two-dimensional finite element magnetic modeling for scalar hysteresis effects. IEEE Trans. Magn., vol. 37, no. 2, pp. 982 - 988, 2001.

Jiles D.C. A self consistent generalized model for the calculation of minor loops excursions in the theory of hysteresis. IEEE Trans.Magn., vol. 28, no. 5, pp. 2602 - 2604, 1992.

Baghel A.P.S., Kulkarni S.V. Hysteresis modeling of the grainoriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model. J. Appl. Phys., vol. 113, no. 4, pp. 043908-1-043908-5, 2013.

Jiles D.C. IEEE Trans. Magn. 30, 4326 (1994).

Jiles D.C. Frequency dependence of hysteresis curves in conducting magnetic materials. J. Appl. Phys., vol. 76, no. 10, pp. 5849 - 5855, 1994.

Chwastek K. Modeling of dynamic hysteresis loops using the Jiles-Atherton approach. Math. Comput. Model. Dyn. Syst., vol. 15, no. 1, pp. 95-105, 2009.

Li H., Li Q., Xu X., Lu T., Zhang J., Li L. A modified method for Jiles-Atherton hysteresis model and its application in numerical simulation of devices involving magnetic materials. IEEE Trans. Magn., vol. 47, no. 5, pp. 1094-1097, 2011.

Zirka S.E., Moroz Y.I., Harrison R.G., Chwastek K. On physical aspects of the Jiles-Atherton hysteresis models. J. Appl. Phys., vol. 112, no. 4, pp. 043916-1-043916-7, 2012.

Дружинин В.В. Магнитные свойства электротехнической стали. М.: Энергия, 1974.

Zirka S.E., Moroz Y.I., Marketos P., Moses A.J., Jiles D.C., Matsuo T. Generalization of the classical method for calculating dynamic hysteresis loops in grain-oriented electrical steels. IEEE Trans. Magn., vol. 44, no. 9, pp. 2113-2126, 2008.

Baghel A.P.S., Kulkarni S.V. Dynamic Loss Inclusion in the Jiles-Atherton (JA) Hysteresis Model Using the Original JA Approach and the Field Separation Approach. IEEE Transactions on Magnetics 50 (2), 369-372.

Podbereznaya I.B., Pavlenko A.V. Accounting for dynamic losses in the Jiles-Atherton model of magnetic hysteresis/ Irina Podbereznaya, Alexander Pavlenko // Journal of Magnetism and Magnetic Materials. Volume 513, 1 November 2020, 167070, pp. 1 - 5.

Paltanea V., Paltanea G., Mater. Sci. Forum 670, 66 (2011).

Chikazumi S. Physics of Ferromagnetism (Oxford Univ. Press, NewYork, 1997).

Baghel A.P.S., Kulkarni S.V. Parameter identification of the Jiles-Atherton hysteresis model using a hybrid technique. IET-Electr. Power Appl., vol. 6, pp. 689 - 695, 2012.

Выбор оптимальных параметров для модели магнит-ного гистерезиса Джилса-Атертона / И.Б. Подберезная, В.В. Медведев, А.В. Павленко, И.А. Большенко // Электротехника. 2018. № 12. С. 73 - 78.

Selection of Optimal Parameters for the Jiles-Atherton Magnetic Hysteresis Model / I.B. Podbereznaya, V.V. Medvedev, A.V. Pavlenko, I.A. Bol’shenko // Russian Electrical Engineering. 2019. Vol. 90, No. 1. pp. 80 - 85.

Векторный магнитный гистерезис: 3d-модели и алгоритмы в прямой и обратной постановке / И.Б. Подберезная, А.В. Павленко, Г.Я. Ахмедов, И.А. Денисова // Изв. вузов. Электромеханика. 2019. Т. 62. № 4. С. 10 - 16. DOI: 10.17213/0136-3360-2019-4-10-17.

Podbereznaya I.B., Kolpakhchyan P.G., Chamlay S.V. 32. Model and Algorithm 3D of Vector Magnetic Hysteresis / Irina B. Podbereznaya, Pavel G. Kolpakhchyan, Svetlana V. Chamlay // 2019 International Russian Automation Conference (RusAutoCon), 8-14 Sept. 2019, Sochi, Russia. DOI: 10.1109/RUSAUTOCON.2019.8867616.

Воробьев В.В., Ткачев А.Н. Экспериментальное исследование потерь в холоднокатанной стали при однонаправленном периодическом перемагничивании // Изв. вузов. Электромеханика. 1983. № 1. С. 134 - 138.

Published

2021-09-15

How to Cite

(1)
Podbereznaya, I. B.; Tkachev, A. N. Simulation Modeling of Unidirectional Dynamic Remagnetization of Electrical Steel. electromeh 2021, 64, 5-13.

Issue

Section

Articles