Studying the Influence of the Load Profile Changes on the Stack Performance Based on the Fuel Cells with a Proton Exchange Membrane

Authors

  • Nikita A. Faddeev Platov South-Russian State Polytechnic University (NPI)
  • Maxim A. Belichenko Platov South-Russian State Polytechnic University (NPI)
  • Anzhelika V. Serik Platov South-Russian State Polytechnic University (NPI)
  • Victoria A. Sokolova Platov South-Russian State Polytechnic University (NPI)
  • Nina V. Smirnova Platov South-Russian State Polytechnic University (NPI)

DOI:

https://doi.org/10.17213/0136-3360-2022-4-25-30

Keywords:

hydrogen, fuel cells, PEM, durability, degradation

Abstract

The effect of transitions from low power to high power on the output characteristics of a stack based on proton-exchange membrane fuel cells (PEMFC) is considered. The operation of the PEMFC stack in transient operating conditions in the on/off modes and a gradual increase in power with subsequent shutdown is analyzed. 40 % reduction in maximum power during continuous operation in the on / off mode and an 8 % reduction in power in the mode of gradual increase in power with subsequent shutdown being shown. It has been established that different degradation rates can be associated with some factors influence or their combination, including the time of operation at no-load voltage, the time of operation at maximum power, and the energy throughput per unit time. The power plant operation scheme on PEMFC is presented, which allows to withstand the cyclic change of operating modes, while smoothing out the negative consequences of transient modes.

Author Biographies

Nikita A. Faddeev, Platov South-Russian State Polytechnic University (NPI)

Junior researcher, Research Laboratory «New Composite and Functional Materials with Special Properties», Platov South-Russian State Polytechnic University (NPI)

Maxim A. Belichenko, Platov South-Russian State Polytechnic University (NPI)

Laboratory Assistant Research, institute Nanotechnologies and New Materials, Platov South-Russian State Polytechnic University (NPI)

Anzhelika V. Serik, Platov South-Russian State Polytechnic University (NPI)

Laboratory Assistant Research, Institute Nanotechnologies and New Materials, Platov South-Russian State Polytechnic University (NPI)

Victoria A. Sokolova, Platov South-Russian State Polytechnic University (NPI)

Laboratory Assistant, Research Laboratory «New Composite and Functional Materials with Special Properties», Platov South-Russian State Polytechnic University (NPI)

Nina V. Smirnova, Platov South-Russian State Polytechnic University (NPI)

Doctor of Chemical Sciences, Professor, Department «Chemical Technologies», Platov South-Russian State Polytechnic University (NPI)

References

Popel O.S., Tarasenko A.B., Filippov S.P. Fuel cell based power-generating installations: State of the art and future prospects //Thermal Engineering. 2018. Т. 65. №. 12. С. 859 – 874. https://doi.org/10.1134/S0040601518120078

Pan Z.F., An L., Wen C.Y. Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles //Applied Energy. 2019. Т. 240. С. 473 – 485. https://doi.org/10.1016/j.apenergy.2019.02.079

Bethoux O. Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives // Energies. 2020. Т. 13. №. 21. С. 5843. https://doi.org/10.3390/en13215843

Chen H., Song Z., Zhao X., Zhang T., Pei P., & Liang C. A review of durability test protocols of the proton exchange membrane fuel cells for vehicle // Applied energy. 2018. Т. 224. С. 289 – 299. https://doi.org/10.1016/j.apenergy.2018.04.050

Fuel Cell Technical Team Roadmap. Available online: https://www.energy.gov/sites/prod/files/2017/11/f46/FCTT_ Roadmap_Nov_2017_FINAL.pdf (accessed on 1 February 2021).

Wang Y., Diaz D. F.R., Chen K.S., Wang Z., & Adroher X.C. Materials, technological status, and fundamentals of PEM fuel cells–a review // Materials today. 2020. Т. 32. С. 178 – 203. https://doi.org/10.1016/j.mattod.2019.06.005

Fuel Cells Section. In Multi-Year Research, Development, and Demonstartion Plan; U.S. Department of Energy: Wash-ington, DC, USA, 2015; pp. 1 – 58.

Пат. 2 748 853 РФ МПК H01M 8/02, H01M 8/0202. Биполярная пластина топливного элемента с твердым полимерным электролитом и способ ее изготовления / Смирнова Н.В., Фаддеев Н.А., Горчаков В.В.

Leontyev I. et al. New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells //Applied Catalysis A: General. 2012. Т. 431. С. 120 – 125. https://doi.org/10.1016/j.apcata.2012.04.025

FCTESTNET Test Module TM PEFC SC 5-7, Version 30 04; JRC Scientific and Technical Publications Office of the European Union: Luxembourg, 2010.

Nguyen H.L. et al. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: main influencing parameters and testing protocols //Energies. 2021. Т. 14. №. 13. С. 4048. https://doi.org/10.3390/en14134048

Aarhaug T.A., Svensson A.M. Degradation rates of PEM fuel cells running at open circuit voltage // ECS Transac-tions. 2006. Т. 3. № 1. С. 775. https://doi.org/10.1149/1.2356197

Bloom I., Walker L., Basco J., Malkow T., De Marco G., & Tsotridis G. A comparison of fuel cell test protocols // ECS Transactions. 2011. Т. 30. №. 1. С. 227. https://doi.org/10.1149/1.3562478

Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland. Scientific aspects of polymer electrolyte fuel cell durability and degradation // Chemical reviews. 2007. Т. 107. № 10. С. 3904 – 3951. https://doi.org/10.1021/cr050182l

Васюков И.В. Компьютерные модели топливного элемента с протонообменной мембраной для исследования переходных режимов в электротехнических комплексах энергетических установок // Изв. вузов. Электромеханика. 2021. Т. 64. № 3. С. 60 – 67. https://doi.org/ https://doi.org/10.17213/0136-3360-2021-3-60-67.

Васюков И.В., Павленко А.В., Батищев Д.В. Обзор и анализ топологий преобразователей систем электропитания на водородных топливных элементах для беспилотных летательных аппаратов киловаттного класса мощности // Изв. вузов. Электромеханика. 2022. Т. 65. № 2. С. 19 – 26. https://doi.org/10.17213/0136-3360-2022-2-19-26.

Published

2023-01-17

How to Cite

(1)
Faddeev, N. A.; Belichenko, M. A.; Serik, A. V.; Sokolova, V. A.; Smirnova, N. V. Studying the Influence of the Load Profile Changes on the Stack Performance Based on the Fuel Cells With a Proton Exchange Membrane. electromeh 2023, 65, 25-30.

Issue

Section

Articles