Improving electric drive control system of cold plate leveler

Authors

  • Pavel A. Public Joint-Stock Company «Magnitogorsk Iron and Steel Works»
  • Boris M. Loginov Public Joint-Stock Company «Magnitogorsk Iron and Steel Works»
  • Andrey Yu. Semitko South Ural State University (National Research University)
  • Vadim R. Khramshin Nosov Magnitogorsk State Technical University

DOI:

https://doi.org/10.17213/0136-3360-2023-2-22-34

Keywords:

rolling production, plate, flatness, defects, cold plate leveler, electric drive, control system, development, modeling, experiment, implementation

Abstract

One of the main requirements to producing flat products is to ensure the flatness of the sheet within the strictly specified tolerances. The main flatness defects are longitudinal, central and edge waves that arise during deformation and cooling during thermomechanical rolling. The allowable limits of deviations for various rolled products of different thickness were listed for 5000 plate mill, PJSC “Magnitogorsk Iron and Steel Works” (PJSC «MMK»). It is noted that most of the defects occur due to the roll gap displacement in the rolling process or due to the thermal regime change when cooling. To eliminate these flatness defects, cold plate levelers are installed in the plate mill production lines. Strip flattening process in roll machines is considered and the characteristics of the nine-roll cold plate leveler at 5000 plate mill are given. The designed electric drive control system is considered. It was noted that its main drawback is that it limits the electric drive torque on all the rolls on one level regardless of the metal rigidity. The article considers the roll electric drives in the cold plate levelers as the interrelated controlled members. A control method is proposed, according to which the motor torques are distributed in accordance with the preset design loads. The automatic load control system was developed, which implements this method, simulation model for interrelated electromechanical systems of the cold plate levelers being developed. The load-balancing controller and its adjustment algorithm were considered. A comparative analysis of the electric drive torques for the design and the proposed settings has been carried out. Equality of motor torques was confirmed for the same load distribution factors. The experimental study results are presented and they confirm decrease in torque disagreements when implementing the developed control method. This provides reduction in electric drive overloads and, consequently, improves their reliability and service life. Uniform distribution of roll torques during deformation contributes to more accurate flattening in the straightening process which increases flatness and reduces the number of skipping the processed sheets.

Author Biographies

Pavel A., Public Joint-Stock Company «Magnitogorsk Iron and Steel Works»

Chief Power Engineers Administration, Public Joint-Stock Company «Magnitogorsk Iron and Steel Works»

Boris M. Loginov, Public Joint-Stock Company «Magnitogorsk Iron and Steel Works»

Candidate of Technical Sciences, Student, South Ural State University (National Research University)

Andrey Yu. Semitko, South Ural State University (National Research University)

Student, South Ural State University (National Research University)

Vadim R. Khramshin, Nosov Magnitogorsk State Technical University

Doctor of Technical Sciences, Professor, Nosov Magnitogorsk State Technical University

References

Совершенствование алгоритмов регулирования толщины и профиля зазора валков реверсивной клети толстолисто-вого прокатного стана / А.С. Карандаев, В.Р. Храмшин, В.Р. Гасияров, С.С. Воронин, Б.М Логинов // Изв. вузов. Электроме-ханика. 2019. Т. 62. № 4. С. 53 – 64. DOI:10.17213/0136-3360-2019-4-53-64

Improvement of Algorithms for Automatic Gauge Control System of the Hot-Rolling Mill / A.S. Karandaev, V.R. Khram-shin, I.Y. Andryushin, A.G. Shubin, B.M. Loginov // Applied Mechanics and Materials. 2015. Vol. 756. Pp. 592 – 597. DOI: 10.4028 /www.scientific.net/AMM.756.592.

Development of Levelling Strategies for Heavy Plates Via Controlled FE Models / M. Laugwitz, S. Seuren, M. Jochum, S. Hojda, J. Lohmar, G. Hirt // Procedia Engineering. 2017. Vol. 207. 1349 – 1354. DOI:10.1016/j.proeng.2017.10.895.

Technological Causes of Vertical Workpiece Asymmetry in Plate Rolling Mills. / A.S. Karandaev, M.A. Zinchenko,

A.Y. Semitko, S.A. Evdokimov, O.I. Petukhova // Lecture Notes in Mechanical Engineering. 2023. Pp. 759 – 768. DOI: 10.1007/978-3-031-14125-6_74.

Molleda J., Usamentiaga R., García D.F. On-Line Flatness Measurement in the Steelmaking Industry // Sensors. 2013. Vol. 13. Pp. 10245 – 10272. DOI: 10.3390/s130810245.

Behrens B.-A., El Nadi T., Krimm R. Development of an Analytical 3D-simulation Model of the Levelling Process // Journal of Materials Processing Technology. 2011. Vol. 211(6). Pp. 1060 – 1068. DOI:10.1016/j.jmatprotec.2011.01.007.

Seo J., Vantyne C., Moon Y.H. Effect of Roll Configuration on the Levelling Efficiency of Tail-up Bent Plate Using Finite Element Analysis // Journal of Manufacturing Science and Engineering. 2015. Vol. 138. DOI: 10.1115/1.4032392.

Laugwitz M., Jochum M., Scheffer T. Towards hot Levelling Strategies for Steel Heavy Plates: Analysis of Flatness Evolu-tion in Accelerated Cooling, Hot Levelling, And Final Air Cooling Via Thermo-mechanical FE Modelling // Int. J. Adv. Manuf. Tech-nol. 2022. Vol. 120. Pp. 2469 – 2488. DOI: 10.1007/s00170-022-08804-1.

Kuo S.-K., Ou Y.-L., Wang D.-A. An Analytical Model for Stress and Curvature Prediction of a Strip Leveling Process // Metals. 2022. Vol. 12. 757. DOI: 10.3390/met12050757.

Park K.-C., Hwang S.-M. Development of a Finite Element Analysis Program for Roller Leveling and Application for Re-moving Blanking Bow Defects of Thin Steel Sheet // ISIJ International. 2002. Vol. 42. Pp. 990 – 999. DOI: 10.2355/ isijinternation-al.42.990.

Perzynski K., Pyzynski K., Swierczynski S. Influence of the Roll Leveler Setup Parameters on the Quality of high- DOI:10.17213/0136-3360-2019-4-53-64// Int. J. Adv. Manuf. Technol. 2022. Vol. 120. Pp. 1203 – 1217. DOI: 10.1007/s00170-022-08877-y.

Grüber M., Oligschläger M., Hirt G. Adjusting of Roller Levellers by Finite Element Simulations Including a Closed-Loop Control // Advanced Materials Research. 2014. Vol. 1018. Pp. 207 –214. DOI:10.4028/www.scientific.net/amr.1018.207.

Aoyama T., Abe K. The Latest Technology of the Heavy Plate Leveler // Seminário de Laminação. 2012. Vol. 49(49). Pp. 857 – 863. DOI 10.5151/2594-5297-22688.

Modelling and Experimental Validation of the Deflection of a Leveller for Hot Heavy Plates / M. Baumgart, A. Steinboeck, T. Kiefer, A. Kugi // Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences. 2015. Vol. 21(3). Pp. 202 – 227. DOI: 10.1080/13873954.2014.941881.

Экспериментальное определение параметров двухмассовой электромеханической системы прокатного стана / А.С. Карандаев, А.А. Радионов, Б.М. Логинов, О.А. Гасиярова, Е.А. Гартлиб, В.Р. Храмшин // Изв. вузов. Электромеханика. 2021. Т. 64. № 3. С. 24 – 35. DOI:10.17213/0136-3360-2021-3-24-35.

Храмшин В.Р. Разработка и внедрение автоматизированных электроприводов и систем регулирования технологиче-ских параметров широкополосного стана горячей прокатки // Вестник Ивановского государственного энергетического универ-ситета. 2012. № 6. С. 100 – 104.

Математическое моделирование взаимосвязанных электромеханических систем непрерывной подгруппы клетей прокатного стана. Часть 3. Исследование способа согласования линейных скоростей вертикальных и горизонтальных валков / В.Р. Храмшин, А.А. Радионов, А.С. Карандаев, С.А. Евдокимов, А.Г. Шубин, Б.М. Логинов // Вестник Южно-Уральского государственного университета. Серия: Энергетика. 2016. Т. 16. № 1. С. 47 – 55.

Согласование скоростей взаимосвязанных электроприводов клетей черновой группы прокатного стана /

А.С. Карандаев, В.Р. Храмшин, А.А. Радионов, И.Ю. Андрюшин, В.В. Галкин, А.Н. Гостев // Труды VII Международной (XVIII Всероссийской) научно-технической конференции по автоматизированному электроприводу. Иваново: Ивановский гос. энергет ун-т, 2012. С. 652 – 657.

Концептуальные направления создания цифровых двойников электротехнических систем агрегатов прокатного про-изводства / А.А. Радионов, А.С. Карандаев, Б.М. Логинов, О.А. Гасиярова // Изв. вузов. Электромеханика. 2021. Т. 64. № 1. С. 54 – 68. DOI: 10.17213/0136-3360-2021-1-54-68

Substantiating and Implementing Concept of Digital Twins for Virtual Commissioning of Industrial Mechatronic Complexes Exemplified by Rolling Mill Coilers / V.R. Gasiyarov, P.A. Bovshik, B.M. Loginov, A.S. Karandaev, V.R. Khramshin,

A.A. Radionov // Machines. 2023. Vol. 11(2). 276. DOI: 10.3390/machines11020276

Published

2023-07-06

How to Cite

(1)
Pavel A.; Loginov, B. M.; Semitko, A. Y.; Khramshin, V. R. Improving Electric Drive Control System of Cold Plate Leveler. electromeh 2023, 66, 22-34.

Issue

Section

Articles